LogoLogo
HomeDocumentationLoginTry for free
  • CARTO Academy
  • Working with geospatial data
    • Geospatial data: the basics
      • What is location data?
      • Types of location data
      • Changing between types of geographical support
    • Optimizing your data for spatial analysis
    • Introduction to Spatial Indexes
      • Spatial Index support in CARTO
      • Create or enrich an index
      • Work with unique Spatial Index properties
      • Scaling common geoprocessing tasks with Spatial Indexes
      • Using Spatial Indexes for analysis
        • Calculating traffic accident rates
        • Which cell phone towers serve the most people?
    • The modern geospatial analysis stack
      • Spatial data management and analytics with CARTO QGIS Plugin
      • Using data from a REST API for real-time updates
  • Building interactive maps
    • Introduction to CARTO Builder
    • Data sources & map layers
    • Widgets & SQL Parameters
    • AI Agents
    • Data visualization
      • Build a dashboard with styled point locations
      • Style qualitative data using hex color codes
      • Create an animated visualization with time series
      • Visualize administrative regions by defined zoom levels
      • Build a dashboard to understand historic weather events
      • Customize your visualization with tailored-made basemaps
      • Visualize static geometries with attributes varying over time
      • Mapping the precipitation impact of Hurricane Milton with raster data
    • Data analysis
      • Filtering multiple data sources simultaneously with SQL Parameters
      • Generate a dynamic index based on user-defined weighted variables
      • Create a dashboard with user-defined analysis using SQL Parameters
      • Analyzing multiple drive-time catchment areas dynamically
      • Extract insights from your maps with AI Agents
    • Sharing and collaborating
      • Dynamically control your maps using URL parameters
      • Embedding maps in BI platforms
    • Solving geospatial use-cases
      • Build a store performance monitoring dashboard for retail stores in the USA
      • Analyzing Airbnb ratings in Los Angeles
      • Assessing the damages of La Palma Volcano
    • CARTO Map Gallery
  • Creating workflows
    • Introduction to CARTO Workflows
    • Step-by-step tutorials
      • Creating a composite score for fire risk
      • Spatial Scoring: Measuring merchant attractiveness and performance
      • Using crime data & spatial analysis to assess home insurance risk
      • Identify the best billboards and stores for a multi-channel product launch campaign
      • Estimate the population covered by LTE cells
      • A no-code approach to optimizing OOH advertising locations
      • Optimizing site selection for EV charging stations
      • How to optimize location planning for wind turbines
      • Calculate population living around top retail locations
      • Identifying customers potentially affected by an active fire in California
      • Finding stores in areas with weather risks
      • How to run scalable routing analysis the easy way
      • Geomarketing techniques for targeting sportswear consumers
      • How to use GenAI to optimize your spatial analysis
      • Analyzing origin and destination patterns
      • Understanding accident hotspots
      • Real-Time Flood Claims Analysis
      • Train a classification model to estimate customer churn
      • Space-time anomaly detection for real-time portfolio management
      • Identify buildings in areas with a deficit of cell network antennas
    • Workflow templates
      • Data Preparation
      • Data Enrichment
      • Spatial Indexes
      • Spatial Analysis
      • Generating new spatial data
      • Statistics
      • Retail and CPG
      • Telco
      • Insurance
      • Out Of Home Advertising
      • BigQuery ML
      • Snowflake ML
  • Advanced spatial analytics
    • Introduction to the Analytics Toolbox
    • Spatial Analytics for BigQuery
      • Step-by-step tutorials
        • How to create a composite score with your spatial data
        • Space-time hotspot analysis: Identifying traffic accident hotspots
        • Spacetime hotspot classification: Understanding collision patterns
        • Time series clustering: Identifying areas with similar traffic accident patterns
        • Detecting space-time anomalous regions to improve real estate portfolio management (quick start)
        • Detecting space-time anomalous regions to improve real estate portfolio management
        • Computing the spatial autocorrelation of POIs locations in Berlin
        • Identifying amenity hotspots in Stockholm
        • Applying GWR to understand Airbnb listings prices
        • Analyzing signal coverage with line-of-sight calculation and path loss estimation
        • Generating trade areas based on drive/walk-time isolines
        • Geocoding your address data
        • Find similar locations based on their trade areas
        • Calculating market penetration in CPG with merchant universe matching
        • Measuring merchant attractiveness and performance in CPG with spatial scores
        • Segmenting CPG merchants using trade areas characteristics
        • Store cannibalization: quantifying the effect of opening new stores on your existing network
        • Find Twin Areas of top-performing stores
        • Opening a new Pizza Hut location in Honolulu
        • An H3 grid of Starbucks locations and simple cannibalization analysis
        • Data enrichment using the Data Observatory
        • New police stations based on Chicago crime location clusters
        • Interpolating elevation along a road using kriging
        • Analyzing weather stations coverage using a Voronoi diagram
        • A NYC subway connection graph using Delaunay triangulation
        • Computing US airport connections and route interpolations
        • Identifying earthquake-prone areas in the state of California
        • Bikeshare stations within a San Francisco buffer
        • Census areas in the UK within tiles of multiple resolutions
        • Creating simple tilesets
        • Creating spatial index tilesets
        • Creating aggregation tilesets
        • Using raster and vector data to calculate total rooftop PV potential in the US
        • Using the routing module
      • About Analytics Toolbox regions
    • Spatial Analytics for Snowflake
      • Step-by-step tutorials
        • How to create a composite score with your spatial data
        • Space-time hotspot analysis: Identifying traffic accident hotspots
        • Computing the spatial autocorrelation of POIs locations in Berlin
        • Identifying amenity hotspots in Stockholm
        • Applying GWR to understand Airbnb listings prices
        • Opening a new Pizza Hut location in Honolulu
        • Generating trade areas based on drive/walk-time isolines
        • Geocoding your address data
        • Creating spatial index tilesets
        • A Quadkey grid of stores locations and simple cannibalization analysis
        • Minkowski distance to perform cannibalization analysis
        • Computing US airport connections and route interpolations
        • New supplier offices based on store locations clusters
        • Analyzing store location coverage using a Voronoi diagram
        • Enrichment of catchment areas for store characterization
        • Data enrichment using the Data Observatory
    • Spatial Analytics for Redshift
      • Step-by-step tutorials
        • Generating trade areas based on drive/walk-time isolines
        • Geocoding your address data
        • Creating spatial index tilesets
Powered by GitBook
On this page
  • Buffer
  • Clip/intersect
  • Difference
  • Spatial Join
  • Aggregate within a distance
  • Next up...

Was this helpful?

Export as PDF
  1. Working with geospatial data
  2. Introduction to Spatial Indexes

Scaling common geoprocessing tasks with Spatial Indexes

Last updated 4 months ago

Was this helpful?

So, you've decided to start scaling your analysis using Spatial Indexes - great! When using these grid systems, some common spatial processing tasks require a slightly different approach to when using geometries.

To help you get started, we've created a reference guide below for how you can use Spatial Indexes to complete common geoprocessing tasks - from buffers to clips. Once you're up and running, you'll be amazed at how much more quickly - and cheaply - these operations can run! Remember - you can always revert back to geometries if needed.

All of these tasks are undertaken with CARTO Workflows - our low-code tool for automating spatial analyses. Find more tutorials on using Workflows .


Buffer

The humble buffer is one of the most basic - but most useful - forms of spatial analysis. It's used to create a fixed-distance ring around an input feature.

  • With geometries... use the ST Buffer tool.

  • With Spatial Indexes... to a Spatial Index, then use a H3/Quadbin component to approximate a buffer. Lookup H3 resolutions and Quadbin resolutions to work out the K-Ring size needed.

Clip/intersect

Where does geometry A overlap with geometry B? It’s one of the most common spatial tasks, but heavy geometries can make this straightforward task a pain.

  • With geometries... use the ST Intersection tool. This may look like a simple process, but it can be incredibly computationally expensive.

Difference

For a “difference” process, we want the result to be the opposite of the previous intersection, retaining all areas which do not intersect.

  • With geometries... use the ST Difference tool. Again, while this may look straightforward, it can be slow and computationally expensive.

Spatial Join

Spatial Joins are the "bread and butter" of spatial analysis. They can be used to answer questions like "how many people live within a 10-minute drive of store X?" or "what is the total property value in this flooded area?"

  • With geometries... use the Enrich Polygons component.

  • With Spatial Indexes... use the Enrich H3 / Quadbin Grid component.

Aggregate within a distance

Say you wanted to know the population within 30 miles of

For instance, in the example below we want to create a new column holding the number of stores in a 1km radius.

  • With Geometries... create a Buffer, run a Spatial Join and then use Group by to aggregate the results.

  • With Spatial Indexes... have the inputs stored as a H3 grid with both the source and target features in the same table. Like in the earlier Buffer example, use the H3 K-Ring component to create your "search area." Now, you can use the Group by component - grouping by the newly created H3 K-Ring ID - to sum the number of stores within the search area.

This is a fairly simple example, but let's imagine something more complex - say you wanted to calculate the population within 30 miles of a series of input features. Creating and enriching buffers of this size - particularly when you have tens of thousands of inputs - will be incredibly slow, particularly when your input data is very detailed. This type of calculation could take hours - or even days - without Spatial Indexes.


Next up...

With Spatial Indexes... to a Spatial Index, then use a Join (inner) to keep only cells which can be found in both inputs.

With Spatial Indexes... again to a Spatial Index, this time using a full outer Join. A Where component can then be used to filter only "different" cells (where h3 IS null AND h3_joined IS not null) - at a fraction of the calculation size.

Our provides a series of Enrichment tools which make these types of analyses easy. Enrichment tools for both geometries and Spatial Indexes are available - but we've estimated the latter of these are up to 98% faster!

Check out the full guide to enriching Spatial Indexes .

convert both input geometries
convert both input geometries
Analytics Toolbox
here
convert the input geometry
here
here
here
Using Spatial Indexes for analysis | Academy
K-Ring
Logo